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List ol Symbols

The following is a list of all symbols used in this study,
accompanied by a brief description. Vectors are indicated by
brackets with the dimensions of the variable in the brackets.
Matrices are denoted by brackets with both dimensions given

within the brackets.

A[2n x 2n] Matrix of partial derivatives of

F with respect to z (i.e., %é)

A Constant associated with the linear

function relating insulation weight

per unit area to total heat load per
unit area.

a[6] Coefficients of polynomial represent-
ing transition region for the boundary
layer function g

B Constant associated with the linecar
function relating insulation weight per
unit area to total heat load per unit

area.
b[np] Coefficients used in the definition of
y
Clql Control variable inequality constraints
CD Aerodynamic drag coefficient
CD Constant associated with Newtonlan flow
L drag equation
CU Drag coefficient at zero angle of attack
Q
CL Aerodynamic 1lift coefficient
CL Constant associated with Newtonian {flow
o) lift equation
c[np] Soefficients used in the definition of
Aerodynamic drag
Lift: drag ratio
r Unit vector in the direction of increas-
ing T
e, ggét gector in the direction of increas-
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Unit vector in the direction of in-
creasing ¢

Unit vector in the dircction of v

Unit vector along the zero lift line
of the vehicle.

Unit vector directed out the left side
of the vehicle forming a righthand
system with ey and c,

w W

Unit vector lying in the planc of
symmetry of the vehicle.

Unit vector lying in the plane of
symmetry of the vehicle forming a right-
hand system with e and e

*b b

The derivatives with respect to time
states and multipliers evaluated using
the optimal control.

The derivatives with respect to time of
the state variables.

Boundary layer function relating the
effects of the nature of the flow with-
in the boundary layer to the heating
rate.

Variational Hamiltonian

Boundary conditions for optimization
problem

Identity matrix
Performance index

Gravitational constant for the earth
Convective heat transfer constant

Density constant
Boundary layer function constant
Reynolds number constant

Aerodynamic 1lift

Number of control variables
Terminal constraints

Mass of vehicle

Number of state variables
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RL[np]

Number of panels comprising the ther-
mal protection system

Number of terminal constraints

Integrand of performance index
Convective heating rate
Number of control variable inequality

constraints

Reference heating rate, at the stagna-
tion point on a one-foot radius sphere

Reynolds number per foot at which trans-
ition from laminar to turbulent flow
begins on a panel.

Reference Reynolds number per foot
Radial distance from the center of the
earth to the reentry vehicle.

Radius of the earth

Vehicle reference area
Vehicle reference area per unit mass

Panel areas
Panel temperatures

Independent variable, time

Initial time

Final time

Control variables
Velocity magnitude

Circular orbital speed at r = T,

Weight of the vehicle
Weight of the thermal protection system

Weight of the insulation on a panel

State variables

Functions which account for the effect
of angle of attack

Variables consisting of states and
multipliers

Angle of attack
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()
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()
SO

0
5t ()
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X

Roll angle
Flight path angle

Surface emissivity

Parameter used in defining the par-
tial derivatives of the optimal angle
of attack

Angle used in defining the optimal angle
of attack

Longitude

Lagrange multipliers associated with the
states

Weighting factor

Lagrange multipliers associated with the
control variable inequality constraints
Atmospheric density

Atmospheric density at the surface of
the earth

Stephan-Boltzman constant
Fundamental matrix

First n columns of the fundamental
matrix

Last n columns of the fundamental
matrix

Latitude

Heading angle

holding t constant

Total variation in ( )

Variation of ( )

Derivative with respect to t
Transpose
Inverse

Derivative of () with respect to t

Partial derivative of ( ) with respect
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Partial derivative of ( ) with respect
to X
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I. Introduction

The design procedure for any complex system is typically
one of compromise and trade-off. The design of the space
shuttle reentry vehicle is certainly no exception because
numerous factors demand attention and contribute to the per-
formance capability of the vehicle.

A primary consideration in the design of any reentry
vehicle is the aerodynamic heating which the vehicle will en-
counter upon reentry. The total heat input and the associated
temperatures directly determine the amount of thermal protec-
tion necessary for the safe reentry of the vehicle. The amount
of thermal protection required is particularly important because
the resultant weight is usually a significant portion of the
vehicle weight. Consequently, weight penalties incurred by ex-
cessive heating reduce the payload capability with a resultant
increase in payload delivery cost. Therefore, trajectories
which yield minimal weight penalties due to heating effects are
desirable in order to improve the operational efficiency of the
vehicle.

Of the suggested models for the Thermal Protection System
(TPS), the Reuseable Exterior Insulation system (REI) is the
model selected for this study. The REI system is composed of
titanium covered by a surface insulation material. The insula-
tion is used on that portion of the surface where the local
temperature exceeds 650° F. Additional internal insulation 1is
utilized on all fuselage and wing areas which exceed 650° F.

To estimate the weight of the TPS, the surface of the ve-
hicle is divided into n panels. The weight of each panel 1is
related to the total heat transferred to the panel during re-
entry. A typical variation of exterior insulation weight per
unit surface area with heat load is indicated in Figure 1.
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Figure 1. REI Weight Versus Heat Load

If the curves shown above are approximated by a linear function
as indicated by the dashed line, the TPS weight can be related
to the heat load to the n panels as follows:

n
W = T W, (1
TPS j=1
where w. = Aw + Bin (1.
n
or wTPS = §=1(Aw + B Q) (1.

Aw and Bw are constants while Qi is the heat load to the
i-th panel. Consequently, with these simplifications the TPS
weight is linearly related to the heat load, and the minimiza-
tion of the TPS weight is analogous to minimization of the total
heat load.
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II. Performance Index

In the present study only the four lower-surface panels of
the fuselage are considered. In addition, for reentry veloci-
ties on the order of earth orbital speed, aerodynamic heating
is composed primarily of convective heating.1 Therefore, the
heating rate to the underside of the fuselage is represented by
the sum of the convective heating rates to the four individual
pancls, and the performance index to be minimized is the inte-

grated heat input to these panels.

where A is a constant scale factor and QC 1s the convective

heating rate to the selected panels, given by

The reference heating rate, Qg > is the heating rate which
would occur at the stagnation point on a one-foot radius sphere
following the same path as the vehicle, that is,

. 0.5
q, = kcp \%
where kC is a constant, o 1s the atmospheric density and V
is the magnitude of the velocity. The area of the i-th panel is
designated by s, - The function g is a boundary layer de-
pendent function which relates the effects of the nature of the

flow in the boundary layer on the heating rate to the i-th panel.

It is defined5 to be the following second-derivative-continuous

function:

3.15 (

[§9]

)

93]
—
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g; = 1, Rn < 1.0 (Laminar)
Ly
5 . Rn
g; = z: a1 (ﬁ——)J, 1.0 < r— < 1.5 (Transition) (2.4)
j=0 L. L.
g. = k (EE—) 0.3 Rn > 1.5 (Turbulent)
, > 1.
1 g RL. RL.
i i
where Rn is the reference Reynolds number per foot
oVl 1.5
R =k, ( ) (2.5)
n R \- 1/2
4
In these formulas, kg, kR’ aj are constants and RL is the
i

boundary layer transition Reynolds number for the i-th panel.
The function Y3 is introduced to account for the effect of
angle of attack on the heating rate to the i-th panel. The par-
ticular form of y; was chosen because it expresses the ex-
pected influence of o and was simple to implement. The ex-

pression for Y3 is given as

yi(e) = by + c;|sin’ql (2.6)

where bi and c; are constants determined by fitting y; to

expcrimental data and o 1is the angle of attack.

IIT. Dynamical Model

The dynamical model for the atmospheric reentry is chosen
to be as uncomplicated as practical and yet retain the salient
characteristics of a more exact formulation. In particular, the
earth is assumed to be spherical, non-rotating and to possess an
inverse square gravitational force field. The atmosphere is
considered to be at rest with respect to the earth and to vary

exponentially with altitude.



The spacecraft is located relative to the earth via a
spherical coordinate system whose origin is fixed at the cen-
ter of the earth as illustrated in Figure 2. The distance from
the center of the earth to the vehicle is designated by r ,
while the longitude and latitude of the vehicle are represented
by 6 and ¢ , Trespectively.

The velocity vector, with magnitude V , 1is oriented in
space by using the heading angle, ¢ , and the flight path
anglc, vy as indicated in Figure 3. The attitude of the ve-
hicle is then established by a roll angle, g, about the veloc-
ity vector followed by an angle of attack, o , about the ve-
hicle's lateral axis as shown in Figure 4. Zero sideslip angle
is assumed.

In this system, the equations governing the motion of the

vehicle are3
r =V sin y
5 = V cos vy cos ¢
r cos ¢
«+ V cos vy sin ¢
¢ = T
(3
vV - . ksiny D
r? m
& - k cos vy e V COS ¥ + lv-cos o
V2 T m
Vo= - V cos y cos ¢y tan ¢ _ L sin F
T mV cos y

where Kk is the gravitational constant of the earth, m 1is the
mass of the vehicle, L 1is the 1ift of the vehicle, D 1is the
drag of the vehicle and motion of the vehicle about its center
of mass is ignored. Lift and drag are defined in the conven-

tional manner as
2

=
1

(1/2) pV©scC

L

and (3.

2

)
1]

(1/2) pv~sC

D

1)




Figure 2. Earth-Centered Coordinate System
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Figure 3. Body-Centered Wind Axis System
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Figure 4. Definition of Control Angles



where S is the vehicle reflerence arca and C] and C“ are

cocfflicients of lift and drag, respectively. The atmospheric
density, p , 1s assumed to vary exponentially with altitude
according to

p = po_kd(r're) (3.3)

where R and kd are constants chosen® to approximate the

density of the actual atmosphere over the altitudes of interest
for reentry and where T is the radius of the earth.
The aerodynamic coefficients CL are generally

functions of the Mach number and of the Reynolds number as well

and Cp
as the angle of attack. However, for hypersonic flight, the
drag coefficient is essentially independent of the Mach number
and for high altitude flight the effects of Reynolds number are
relatively unimportant in comparison with those due to angle of
attack.
assumed to be functions of angle of attack only and are given by

Consequently, the 1ift and drag coefficients are

the following relationshipss’9 obtained from Newtonian flow
theory:
C; = C, sin a cos a |sin qf (3.4)
o
C,=Cy, + C. |sin’al (3.5)
D D D :
o L
where CL s CD and C are constants. The 1ift-to-drag

o o) DL

ratio, E , is then given as

C; sin a cos a |sin af
E = —> _ (3.6)

The dependence of CL’ ¢ and E wupon angle of attack for the
vehicle of this study is illustrated in Figure 5.
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IV. Control Variable Inequality Constraints

The reentry vehicle is controlled by varying the angle of
‘attack, o , which determines the magnitude of the aerodynamic
force and the roll angle, B , which determines the direction
of the 1i1ft force. Although for the analysis of this study, ¢
is not necessarily subject to physical limitation, o must
certainly be limited. The desire to reduce heating on the upper
surface of the vehicle requires that o be non-negative. In
addition, the obvious constraint that o not exceed 90 degrees
must be imposed. However, more exact modeling requires even
closer restrictions to be placed on the angle of attack. For ,
example, control power and stability boundaries for a typical
configuration place additional constraints upon the angle of

attack as illustrated in Figure 6.
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Figure 6. Angle of Attack Boundaries
versus Mach Number
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In accordance with such restrictions, the angle of attack

limits are chosen to be

55°

Q
max

(4.1)

o 15°

min
Note that the maximum angle of attack is approximately equal to
the angle of attack for maximum lift coefficient.

Minimization of heat load is usually accomplished by pro-
ducing high peak heating rates over short time intervals. This
is done by flying a trajectory which is composed of a sequence
of skip segments in which the vehicle dives down into the atmos-
phere until sufficient 1ift is generated to force it back up into
the thinner atmosphere. For a vehicle constrained to positive
angles of attack, the skip is produced by first rolling down
(| 8] > 90°) . This produces a downward component of 1ift which
forces the vehicle down into the atmosphere. The pull-up is then
accomplished by rolling up. Skipping maneuvers such as these can
produce high peak altitudes as well as high heating rates requir-
ing increased accuracy from the guidance system. As a means of
reducing the adverse effects of the skipping phenomenon, a maxi-
mum roll angle is implemented to reduce the vehicle's ability
to dive into the atmosphere. Therefore, the constraints applied

to the roll angle are

—_ [
Rnax = 70
. (4.2)
%nin =0

V. Boundary Conditions

The immediate projected use of the shuttle vehicle is that
of transporting men and equipment to orbiting earth satellites
or space laboratories. Therefore, the initial conditions for
reentry will remain approximately the same for most of its

missions. The nominal values selected for this investigation
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are indicated below:

r - r_ = 400,000 ft
o} e
60 =0
¢, = 0
VO = 25,975 ft/sec (5.1)
Yo = ° 1.5 deg
Vo = O
t, = 0

The shuttle vehicle represents, in many respects, a signi-
ficant departure from previous operational reentry vehicles.
The increased hypersonic lift-to-drag ratio (1.5 to 2.0) of the
shuttle enables it to achieve a larger reentry footprint. In .
addition, the utilization of engines for subsonic cruise further
increases the footprint size and enables the vehicle to land as
a conventional aircraft. Therefore, the amount of crossrange
and downrange required for a specific mission quite naturally
depends upon orbit inclination, the location of an acceptable
landing site, the location of the deorbit maneuver and subsonic
range capability. 1In order to define the reentry optimization
problem, the following nominal terminal conditions are imposed

ef = 6200 mi/re radians
¢ = - 1880 mi/re radians (5.2)
Vf = 3000 ft/sec

VI. The Perturbation Method

The previous sections define the reentry optimization prob-
lem treated in this study to be of the following form:

te
J =.JP Q(x,u,t)dt (6.1)
t

0]
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subject to the differential constraints,
x = f(x,u,t) (6.2)

the control variable inequality constraints,

C(x,u,t) <0 (6.3)
the initial conditions
x(t.) = x
° ° (6.4)
to =0

and the terminal conditions

M(x 0 (6.5)

£rtg)
where Q 1is a scalar function, x 1is an n-vector of state vari-
ables, u 1is an & vector of control variables, C 1is a q
vector of control variable constraints, X, is an n-vector of
initial conditions, t, is the initial time and M is a p
vector of terminal conditions.

ces 2 .. .
The necessary conditions® for a minimum are written as:

X = H (x,u,t) (6.6)
A= - HY (U, u,t) (6.7)
0 = Hu(x,u,k,u,t) (6.8)

where X 1is an n-vector of time dependent Lagrange multipliers
associated with the states and H is the variational Hamiltonian,

T T

H=Q+ 2 f + uC (6.9)
with
My = 0 when Ci <0
(6.10)
u. > 0 when C. =0

1 1
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where 1y is an f-vector of multipliers associated with the
control variable inequality constraints and where the matrix
H must be positive definite.

uu
The following. boundary conditions must be satisfied:

x =x, at t-= t, (6.11)
and
H(tf) = 0
T
A(tf) = v Mx(xf,tf) at t = tg (6.12)

M(xf,tf) =0

where Vv 1is a p-vector of constant multipliers associated with
the specified terminal conditions.

Elimination of the control wu by using Eqs. (6.8) and
(6.10) reduces the optimization problem to a two-point boundary
value problem (TPBVP) which is stated in the following way:

Find the unknown elements of Z, and the final time te
which yield the solution of

z = F(z,t) (6.13)
" x
where z =|-- (6.14)
R
[~ T
Hy
and F =|------ (6.15)
_uT
X

Such that the (n+l) vector, h(zf, tf), of terminal con-
straints, composed of Eq. (6.12) vanishes.

Numerous techniques are available for solution of two-point
boundary value problems. The technique used in this study is
the method of perturbation functions (MPF) discussed in Ref. 3
and 7.

To initiate the method, the unknown elements of the vector
z (in this study the Lagrange multipliers, AO) and the final

)
time are selected in some way. A nominal trajectory is then
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obtained by integrating Eqs. (€.13) from t, to te . Since
this trajectory seldom satisfies the terminal conditions, a
correction procedure is required to determine the necessary
changes in Ao and te (BAO and th) . This is accomplished
by considering small perturbations about the nominal path
through linearization of the nonlinear differential equations

and terminal conditions as follows:

§z = Adz (6.
where

A= Egﬂ (2n x 2n matrix) (6.

Also, the expected change in the terminal dissatisfaction is

written as

_ | ah .
Ah—[ﬁjl dzf+ [:h:l étf (6
f f
where
: oh . oh
}1] = ~—] Z,. * (6.
[ £ dz j ¢ °f It e
If it is desired to satisfy the end conditions in one iteration,
Ah  is chosen to be
Ah = - h (6.
so that
_ | 3h .
- h = [ﬁ] (SZf + [h] 6tf (6.
f f
The changes 62f are related to the changes Gzo in this line-
arized system by the fundamental matrixf @(tf,to) , according
to
6zf = @(tf,to)dzo (6.

where ¢ obeys the following linear matrix differential equation

and initial condition

.18)

19)

20)

21)

22)
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®(t,to) = A@(t,to) (Zn x 2n matrix) (6.23)
(L
1,0 :
o(t ,t)) = |-~ - (6.24)

where I is an n x n identity matrix and 0 1s an n x n null
matrix.

Since all initial states are specified, only the effect of
perturbations in the initial multipliers must be computed.
Therefore, only the right half or the last n columns of the fun-

damental matrix must be integrated. Following this idea, let

o = E)l E @2] | (6.25)

then
éz = A®2 (2n x n matrix)
0 (6.26)
o, (t ,t) = |-
I
and '
ézf = ®z(tf,to)6xo (6.27)

By using this result, Eq. (6.21) is rewritten as

-h = [‘S‘%J o, (te,t )6 +[l:ﬁ]6tf (6.28)
f

f

Solution of this system of n + 1 simultaneous linear equa-
tions yields the changes GAO and dtf which, if the TPBVP were
linear, would produce a new vector AO and final time te ca-
pable of satisfying the terminal constraints. However, the non-
linear nature of most optimization problems requires an iterative
procedure in which only a portion of the predicted correction is
applied on each iterate in an effort to maintain the validity of
the linearization process. The technique used in this study for
scaling the corrections is the same as that used by Williamson?

and Lastman and Tapley7 in which the scale factor is computed
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such that the magnitude of the correction vector never exceeds
a prescribed fraction (e.g., 0.30) of the magnitude of the ini-
tial vector of multipliers, AO
With the preceding discussion in mind, the basic algorithm
of the MPF is presented as follows:
1. Guess nominal starting values for Xo and te
2. Integrate the differential equations for the states
and the multipliers simultaneously with the linear
perturbation equations from t, to tg
3. Evaluate the dissatisfaction in the terminal conditions
and compute the changes GAO and 6te
4. Add the scaled changes to the previous values for Ao
and te and repeat steps 2 through 4 until the dis-
satisfaction in the terminal conditions is considered

small.

VII. Numerical Integration

The integration of the differential equations for this in-
vestigation was performed using the variable stepsize Runge-
Kutta 7(8) formulation developed and described by Fehlberg6. A
relative single-step truncation error analysis, based on the
leading term of the truncation error for the seventh-order formu-
lation in which both the linear and nonlinear equations were
considered, was used in computing the stepsize.

The units used in the integration of the differential equa-
tions are miles, radians and miles per second. The use of these
units affords a form of normalization of the variables and mul-
tipliers which tends to aid in the convergence characteristics
of the problem. All numerical computation was performed in
single precision on the CDC 6600/6400 computer system at the

University of Texas at Austin.

VIII. Application of the MPF and Numerical Results

The MPF requires the optimization problem to be reduced to
a TPBVP. Therefore, begin by writing the variational Hamiltonian
for the reentry as




V cos vy cos y

V cos v sin ¢

H=Q + ArV sin y + Ae T Cos § + A¢ -
iy EERY Lo -
. Ay(_ kvigs Yy .,V ;os Y o, % pVS4C, cos )
+ Aw(_ V cos vy cgs Y tan ¢ % OVSHC, %%%_g)
g lapay - @ logyy o)+ uE(emax - B (Fpip — 0
Se = 2.

where

The differential equations for the multipliers

with the states,

then

>

>

>

be

A

5 o=-nl
come
o= - Qr + 2y Vv cgi zogoz v o, A¢ Vv cosrz sin Y
Sy BESRY L 2o vis,cp)
- Xy(Zkviﬁs y _V ;25 Y o, % b VS4C, cos £)
R R TR
0
S V cos vy cos Y sin ¢ + 2 V cos vy cos ¢
6 T cos?¢ Y T cos?¢
- QV - kr sin vy - Ae coi Zogo; Yo A¢ cos I sin Y
* AyPVSCq - AY(k %gizy + Coi Y o+ % PSxC; cos g)
+ kw(cos Y coi Y _tan ¢ % 0S4 L %%%_S

associated

(8.

(8.

(8.

(8.

(8.

(8.
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V sin y cos y | X V sin y sin g

>te
n
[}

ArV cos y + Ae

Y T COS ¢ o) r
k cos vy _ k sin vy V sin y
+ AV —7 kY( VZ — )
_ V. sin y cos ¢y tan ¢ _ 1 sin R tan vy
Aw( - > pVS*CL Cos ¥ ) (8.7)
3 = V cos y sin ¢ _ N V cos y cos ¢y _ A V cos vy sin ¢ tan ¢
Y 8 r cos ¢ ¢ T Y T
(8.8)
where 4
Q = A4, X sigV: (8.9)
i=1
4
Qr = ¢ Z [(ap8,. + 9p 8;)5;7;] (8.10)
=1 1 T
4
QV = AC Z [(quV. + 99 gi)siyi] (8.11)
i=1 1 Vv
and
. _ -.5 3.15
qor = 0.5 kcp prV (8.12)
G. = 3.15 k ooy 1S (8.13)
iy c
pp = - kdp (8.14)

The partial derivatives of the boundary layer function, g; »
are written as
3gi Bgi aRn

Xy 9X BRn 9X

Since g, is dependent upon the ratio Rn/RL.’ so are its deri-

vatives. 1
. R
;%l =0 Rn < 1.0
n L

.15)



20

og R j-1 R
1 _ -1 n n
n i j=1 . L.
i i
Bgl ) . 1 Rn -7 Rn
‘ n i L. L.
| i i
|
In addition,
dR
.5 3. -3/4
5?2 = 1.125 kpp“7p V7q, / (8.17)
and
oR
n _ 3/2,2+ -3/4
E\ 0.6375 kRp \ 4, (8.18)
The optimal control is determined by requiring Ha =0,

HB = 0 and the matrix Huu given by
I
Haa:HaB
H Sl e - -
uu I
Heolfe g

to be positive definite.
From these conditions, the optimal roll angle is given by

A
sin g = ——— 24— 1
(xw + AY cos“ v)
- A_ COSs Y
cos B = — 2Y ——177 (8.19)
A A
( v + Y cos® v)
The optimal angle of attack is given by
_ 1 . 1 .
a = > [h + arcsin (3 sinn)] - m<n <m (8.20)
where
sinn = (Aw sin R - AY cos y cos R)/P
Acdo 4 AVVCDL
cosn = (—— z $;85C4 - C )ycos y/P
fpVS*CL i=1 L0

(o
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(wf free)
(tf free)
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The boundary conditions for the TPBVP are summarized as

The values for the unknown initial multipliers,
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(8.21)

(8.22)

(8.23)

for the trajectory presented are listed
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A, = - 1.54294713 x 1072
(o]

Ng = - 3.24144967 x 1074
(o]

A. = 3.08551281 x 10 %
¢O

Ay = - 1.52864923 x 101
(o]

A = 1.04803561 x 10

YO

A, = 59.9992066 x 10

l1)0

tf = 2039.729 seconds

Graphical representation of the resultant trajectory is pre-
sented in Figures 7 through 11.

The optimal angle of attack and roll angle are plotted
versus time in Figure 7. Whereas, the maximum roll angle con-
straint is encountered twice, the angle of attack encounters
its minimum boundary only once, near the end of the trajectory.
For the major portion of the trajectory the optimal angle of
attack is very nearly that for EMAX . This is not unusual be-
cause the specified crossrange is near the maximum crossrange
for the vehicle and the downrange is considerable, which nor-
mally requires high values for E

The time histories for altitude, velocity and flight path
angle are presented in Figure 8; while those for downrange
crossrange and heading angle are presented in Figure 9.
Referring back to Figure 7, it is seen that the roll angle is
at its maximum during the initial reentry phase and the first
altitude peak, which supports the contention that a roll angle
constraint would reduce skip altitudes. The terminal flight
path angle is approximately -22°. Although for operational
reasons a value nearer zero might be more desirable, the ter-
minal altitude and velocity should be adequate to allow the
necessary transition to powered flight.

The reference heating rate, éo , the dynamic pressure

and aerodynamic load factor are plotted versus time in Figure 10.
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The peak heating rate of 124 BTU/(FT2-SEC) which occurs at the
bottom of the first altitude pull-up, is followed by lesser
peaks occurring each time the minimum altitude in a pull-up
maneuver is reached. Dynamic pressure and load factor reach
their maximum values of approximately 266 psf and 1.42 g's,
respectively, at the end of the trajectory. The maximum load
factor is well within projected limits for space-rated per-
sonnel.

The temperatures on the fuselage panels considered in this
study (computed from the following equation

Qi 1/4

T. = [2i - 460° (°F) (8.24)

1 £ 0
S

where € is the surface emissivity and o 1is the Stephan-
Boltzman constant) are plotted versus time in Figure 11.
The maximum temperatures attained are

T1 = 2249° F
MAX

T2 = 1649° F
MAX

T3 = 1509° F
MAX

T4 = 1607° F
MAX

The effect of the growth of the turbulent boundary layer on the
temperatures is evident in the distinct change in character of
the heating on panel 4 at approximately t = 1200 seconds. The
heating to each panel exhibits this effect in turn as the tran-
sition point moves toward the front of the vehicle.

The value of the total heat load to which the four panels
are subjected for this high crossrange trajectory is computed
to be 3.276 x 107 BTU's. As expected, other trajectories with
lower crossrange have lower heat loads. In particular, trajec-
tories computed for crossrange on the order of 1700 miles have

produced heat loads on the order of 2.5 x 107 BTU's.
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IX. Guidance

A three-dimensional optimum reentry trajectory found in
the earlier part of this study was used as the reference tra-
jectory for the guidance studies. The dynamical model of
Section III was used and a first-order guidance algorithm was
implemented. The first-order algorithm implemented was a
closed loop version of the lambda matrix control algorithmlo’ 11.
The details of the algorithm are well known and will not be
repeated here, since use of algorithm for shuttle reentry gui-
dance produced unsatisfactory performance.

When state errors were introduced, the lambda matrix con-
trol guidance scheme produced terminal state errors which were
three to ten times larger than the errors experienced when no
guidance at all was used. Also, due to the nature of the per-
turbation equations, first-order control schemes cannot correct
state errors in longitude at all. This was felt to be a signi-
ficant shortcoming.

Typical guidance simulation results are as follows. Start-
ing with an initial state error in altitude of + 1/2 mile at
the initial time, the guidance algorithm missed the desired
terminal point by over 150 miles while the uncorrected error
produced a trajectory which missed the desired terminal point
by about 50 miles. Other first-order simulations resulted in
even larger terminal state errors.

The programs developed for the guidance study were de-
veloped with the idea that the initial choice of guidance algo-
rithm might well be wrong and that the programming should be
set up 1in such a way that the guidance algorithm could be
casily changed. The programming for the guidance study was
divided into three parts.

The first part (Program A) generates the nominal reference
trajectory and stores it on tape. Program A is a reduced ver-
sion of the trajectory optimization program developed as the
primary tool for the reentry optimization study. This progran
segment will remain the same regardless of the guidance algo-

rithm being tested.
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The second part (Program B) contains routines for input
of the reference trajectory, routines for the computation of
the guidance gains (implementation of the particular guidance
algorithm under study), and routines for the output onto tape
of the reference trajectory plus the guidance gains informa-
tion. When changing guidance algorithms, almost all of the
required programming changes will be in the gain computation
segment of Program B.

The third part (Program C) 1is very short. The program
consists of input routines, a numerical intecgrator, and a
small scction of code which produces control changes f{rom
prc-calculated gains plus known state errors. lxecution time
for this program is of the order of 10-15 seconds for simula-
tion of a 1600 second reentry. No state variable error pre-
diction is used. Instead, the nonlinear equations of state are
integrated from point to point using the corrected controls
(control values obtained by adding guidance-produced control
deviations to the nominal control values). After each inte-
gration step the new state error 1s computed and the corrected
control values for this point are produced.

It is felt that the philosophy employed in designing the
three programs for the study of the guidance problem will greatly
facilitate the determination of guidance schemes which will per-
form adequately for the reentry guidance task. 1t is likely
that an extensive study involving the testing of cxistent gui-
dance algorithms will be necessary to find an algorithm which
will perform adequatecly for shuttle reentry guidance. 1t is
possible that the development of new optimal or sub-optimal
guldance algorithms may be necessary. In any case, the guidance
programs developed in this study provide a ready tool for the

execution of such studies.

X. Conclusions and Recommendations

The problem of optimal reentry of a shuttle-type vehicle
has been considered. In particular, trajectories which mini-

mized the heat input to the underside of the fuselage and



satisficd requirements of downrange, tcerminal velocity and hipgh
crossrange have been computcd. The carth has been assumed to

be spherical, non-rotating and to possess an inverse square
gravitational force field. 1In addition, the atmosphere has been
considered to be at rest with respect to the earth and to vary
exponentially with altitude. Control of the vehicle has been
affected through variation of the angle of attack and roll angle.
The aerodynamic coefficients of 1ift and drag have been considered
to be independent of Mach number and Reynolds number and were
obtained from Newtonian flow theory.

The method of perturbation functions (MPF), a second order
technique, has been used to generate the trajectories and, al-
though troubled at times by the sensitivity ol the trajecctories
to changes in initial conditions, has proved to be an cffective
technique for generating families of solutions, once an initial
trajectory has been obtained.

The principle areas in which this study warrants extension
are (1) improved aerodynamic and atmospheric models, (2) im-
proved methods for generating the corrections to the unknown
initial conditions and (3) investigation of the use of multi-
shooting or intermediate matching techniques, as opposed to the
single-shooting method discussed here, in an effort to reduce

sensitivity problems.
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Appendix A: Constants

This appendix contains all relevant constants used in the

reentry problem.

C. = 2.3
LO
c, = .0786
(0]
Cn = 2.09
D,
A= 1.0 x 1077
. .
k = 1.4076519 x 1026 £t3/sec?
. 0.5 . -3.15 2
kC = 17600 pg, VC BTU/ft"-sec)
ky = 4.2 x 107> 1/ft
2.5
kK = 22
£ (1.5)-3
.- 5.1 x 10°
R~ 1.5
(2116 x 5280)1-
2

S = 6084 ft
W = 214,861 1bs

o = 2.7 x 10°° slugs/ft>
r. = 3960 miles

e
s, = 431 £12
_ 2
s, = 928 ft
_ 2
s, = 1306 ft
3
s = 1408 ft?
4
R, = 1.94 x 104 1/f¢
1
) 4
R, = 1.2 x 107 1/£¢
2
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i

7.0 x 10° 1/ft

3.5 x 10° 1/lt

0.1602 , ¢, = 0.0781

1
0.0505 , c, = 0.156
0.0419 , C, = 0.065
0.0451 , Cyq = 0.039
- 704.9
2974.9
4952.3667
40606.7
16406.4
263.0667
Wrz
e
X slugs
Ve
T
e
13

4.761 x 10
0.8

BTU/(sec—ft2
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Appendix B: Description of Program and Input

The basic flowchart for SHZPDP is shown below.

START

PARGEN

TERMMC

RPLD < SMALD

: 1
DELIC ( END >




36

The following is a list accompanied by a brief description

of cach of the subroutines comprising the program.

siprpp - -

START ---

SETUP ---

PARCHE --

PARGEN --

INTGRT --

@UTPT ---

DERZST --

TERMC ---

Main program which contains the
basic iteration philosophy of
the mcthod.

Called by SHOPDP, sets up all
relevant constants and initial
guesses for the unknown multi-
pliers and final time.

Called by PARGEN, initializes
the matrix DEP which contains
the states, multipliers and fun-
damental matrix.

Called by SHOPDP, computes the
fundamental matrix by integra-
tion of the perturbation equa-
tions and by numerical differ-
ences for comparison.

Called by PARCHE and by SHOPDP.
Computes the fundamental matrix
by integration of linear pertur-
bation equations (MPART = 1)

or by numerical differences
(MPART = 2).

Called by PARGEN and by CORVEC.
Performs integration of equations
by RK 7(8) (METH = 1) or by

RK 4(5) (METH = 2).

Prints states, multipliers and
time. Called by RK 7(8) or RK 4(5)
according to the print increment
specified by IP in call to INTGRT.
Converts altitude from miles to
feet, longitude to downrange in
miles, latitude to crossrange 1in
miles, and velocity from miles per
second to feet per second.

Derivative routine {or states and
multipliers. Called by RK 7(8)
or RK 4(5). '

Derivative routine for states,
multipliers and linear perturba-
tion equations. Called by RK 7(8)
or RK 4(5).

Evaluates terminal dissatisfaction
vector and its norm, ROLD. Called
by SHOPDP.



DELIC ---

LSSDP ---

CARVEC - -

ESTPCT --

DENSIT --

CUBERT --

BNDRYL - -

UNB@UND - -

KWHICH --

FLAGSE --

PRFIND --

U@PT ----

Sets up the linear system to be
solved for the required changes
GAO and étf Called by SHOPDP.

Called by DELIC. Solves for &),
and &t,. by Gaussian elimina-
tion. The matrix input to
LSSDP is destroyed.

Called by DELIC. Scales the cor-
rections computed in DLELIC in a
method specified by the parameter
KCOR. See listing.

Function called by CORVEC which
solves for the percent correction
corresponding to the minimum of a
parabola fit through three suc-
cessive values of the norm of the
terminal dissatisfaction.

Evaluates density and its first and
second derivatives with respect to
altitude. Exponential atmosphere.
Called by EQMAT.

Function called by UBOUND which
evaluates the 1/3 power of a func-
tion.

Called by PRFIND and TESTS. Eval-
uates the boundary layer functions
and their derivatives.

Function which evaluates the nor-
malized miss distance to the en-
trance and exit points on'a control
boundary. Called by TESTS.

Computes angle of attack for accele-

-ration constraint. Called by UOPT

but is not active in this deck.

Function called by UOPT which sets
a flag which indicates whether the
equations of motion are to be eval-
uated on a constraint boundary or
not.

Sets all flags for integration and
boundaries. Called by PARGEN, SETUP,
CORVEC.

Evaluates performance index and its
derivatives. Called by EQOMAT.

Evaluates the optimal control or
bounded control and the relevant
derivatives of the control. Called
by EQMAT.

37
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TESTS --- Performs tests to determine if a
constraint boundary is exceeded.
Contains iteration philosophy to
hit entrance and exit point to
boundary. Called by RK 7(8) or
RK 4(5).

EQMAT --- Called by DERZ or DERZST. Eval-
uates derivatives of the states
and multipliers and the non zero
elements of the matrix of partial
derivatives for the linear pertur-
bation equations.

RK 7(8) - Called by INTGRT. Variable step
seventh-order Runge-Kutta integra-
tor using Fehlberg coefficients.

RK 4(5) - Called by INGRT. Variable step
fourth-order Runge-Kutta integra-
tor using Fehlberg coefficients.

RKCPN --- Called by START. Sets up coeffi-
cients for RK 7(8) and RK 4(5).

Description of Input

Data is input to the program through the following name-
lists.
INTGRT
AER®
PIC@N
IBC
FBC

The following is a description of the variables inpﬁt
through the namelists.

INTGRT:
SMALL --- Stopping condition for iteration. 1If
the norm of the dissatisfaction vector
is less than SMA"L, the program terminates.
PCTN ---- Specified fraction of correction to be
taken, see KCOR.
IPQ ----- Print increment for integration of state,

multipliers and linear perturbation equa-
tions. If IPQ > 0 stepsize is based
only on the state and multipliers. If
IPQ < 0 , stepsize is based on all
variables.



AERD:

CLPSE ---

KPAR ----

DELT ----
MPART ---

METH ----

ITERS ---

SIGDIG --

DVID ----

KBUG ----

CLZERD --

CDZERD - -
CDL -----

Print increment when integrating
state and multipliers only.

Error tolerance for integration.

Specifies type of correction scaling
procedure. See listing of subroutine
DELIC.

Tolerance to which entrance and exit
of control boundaries are satisfied.

KPAR < 0 Analytic and numerical
partials are computed,
program terminates.

KPAR > O Same as above except
program continues
iteration.

KPAR = 0 No action, program con-
tinues.

Initial integration stepsize, seconds.
MPART
MPART
METH = 1 Integration by RK 7(8).
METH = 2 Integration by RK 4(5).

Maximum number of iterations allowed.
If 1ICOUNT = ITERS, program stops.

If the absolute value of relative
terminal dissatisfaction of a state
is less than SIGDIG the dissatisfac-
tion is weighted according to that
element of WTF.

If the absolute value of a variable is
less than ERPS, absolute truncation
error 1s used on that variable in com-
puting an integration stepsize.

1 Analytic partials are used.

Factor which reduces the predicted
stepsize to avoid numerous rejection
of steps.

KBUG # 0 All namelists are printed.
KBUG = 0 No namelists are printed.

Coefficient in Newtonian 1ift equation.
Coefficient in Newtonian drag equation.

Coefficient in Newtonian drag equation.

Vehicle reference area, ft2.

2 Numerical partials are used.
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PICON:

IBC:

WT ------
AMAX ----
AMIN ----

QL ------
CHAPMA --

JTEST ---

NPAN ----

Vehicle weight, 1bs.

Maximum angle of attack, degrees.
Minimum angle of attack, degrees.
Maximum roll angle, degrees.
Minimum roll angle, degrees.

Coefficient of performance index.

Weighting factor for penalty function
on dynamic pressure.

Weighting factor for penalty function
on flight path angle.

Weighting factor for penalty function
on reference heating rate.

Panel. areas, ft?.

Coefficients of function of angle of
attack in heating equation.

Coefficients of function of angle of
attack in heating equation.

Transition Reynolds number for panels.

'Temperature used to specify maximum

reference heating rate allowable.
Maximum acceleration limit (not active).
Chapman heating constant, 17600.

JTEST = 0 Iteration to hit control
boundaries is performed.

JTEST # 0 Boundaries are ignored.
Number of panels.

Initial conditions for states and
multipliers and final time.

ZI(1) = Altitude, feet.

Z1(2) = Downrange, miles.

Z1(3) = Crossrange, miles.

ZI1(4) = Velocity, feet per second.
ZI(5) = Flight path angle, degrees.
ZI1(6) = Heading angle, degrees.
ZI1(7) thru

Z21(12), Multipliers.

ZI1(13) = Final time, seconds.
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FBC:

KINPT --- If desired, multipliers and final

JTFIX ---

time can be input in octal. For
KINPT = 0 read in the multipliers
following Namelist IBC in a 3920
format.

In order to avoid the singularity
in flight path angle, integration
is terminated if the magnitude of
the flight path angle exceeds GAM.
The time at which this occurs is
taken as a new final time and the
program continues.

Terminal conditions for states and
multipliers. The units are the
same as for ZI in IBC.

A vector which specifies which ele-

ments of the ZFN vector are to be

satisfied. For example, if KTC con-
sists of 7, 8, 3, 4, 11, 12. Then,

the terminal conditions to be satis-
fied are

Ar - ZFN (7) =0
xe - ZFN (8) =0
¢ - ZFN (3) =

V - ZFN (4) =

A - ZF =

Y ZFN (11)

Aw - ZFN (12) = 0

as well as

for free final time.

JTFIX =1 Normal Newton-Raphson
sclution for ¢&X and
o]
étf
JTFIX = Fixed final time.
JTFIX = 3 Selected elements of the

KTC vector are satisfied
in a least square manner
according to LSQ.

A vector which specifies which of the

elements of the KTC vector are to be
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satisfied in a least square manner.
For example, if LSQ consists of 1,

2, 5, 6, 7 then for those elements
specified in KTC above, only termi-
nal conditions on the multipliers

A A XY’ A and H(tf) are

r’> e’ Y
treated.
NTC ----- Number of terminal conditions speci-

fied for the least square solution.
In the example above, NTC = 5

WTF ----- Weighting values to be applied to a
terminal dissatisfaction to reduce
its importance in the solution for
the changes 6Ko and dtf

N@J@Y --- Print flag.

INDJBY| = 1 Angle of attack and roll
angle are printed on each
integrated step.

N@JPY < 0 Every iterate to enter or
: exit a control boundary is
printed.



